Mechanobiological simulations of prenatal joint morphogenesis.

نویسندگان

  • Mario Giorgi
  • Alessandra Carriero
  • Sandra J Shefelbine
  • Niamh C Nowlan
چکیده

Joint morphogenesis is the process in which prenatal joints acquire their reciprocal and interlocking shapes. Despite the clinical importance of the process, it remains unclear how joints acquire their shapes. In this study, we simulate 3D mechanobiological joint morphogenesis for which the effects of a range of movements (or lack of movement) and different initial joint shapes are explored. We propose that static hydrostatic compression inhibits cartilage growth while dynamic hydrostatic compression promotes cartilage growth. Both pre-cavitational (no muscle contractions) and post-cavitational (with muscle contractions) phases of joint development were simulated. Our results showed that for hinge type motion (planar motion from 45° to 120°) the proximal joint surface developed a convex profile in the posterior region and the distal joint surface developed a slightly concave profile. When 3D movements from 40° to -40° in two planes were applied, simulating a rotational movement, the proximal joint surface developed a concave profile whereas the distal joint surface rudiment acquire a rounded convex profile, showing an interlocking shape typical of a ball and socket joint. The significance of this research is that it provides new and important insights into normal and abnormal joint development, and contributes to our understanding of the mechanical factors driving very early joint morphogenesis. An enhanced understanding of how prenatal joints form is critical for developing strategies for early diagnosis and preventative treatments for congenital musculoskeletal abnormalities such as developmental dysplasia of the hip.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: application to hip dysplasia

Joint morphogenesis is an important phase of prenatal joint development during which the opposing cartilaginous rudiments acquire their reciprocal and interlocking shapes. At an early stage of development, the prenatal hip joint is formed of a deep acetabular cavity that almost totally encloses the head. By the time of birth, the acetabulum has become shallower and the femoral head has lost sub...

متن کامل

A Chick Embryo in-Vitro Model of Knee Morphogenesis

   Background: In this feasibility study, a mechanically loaded in-vitro tissue culture model of joint morphogenesis using the isolated lower extremity of the 8 day old chick embryo was developed to assess the effects of mechanical loading on joint morphogenesis. Methods: The developed in-vitro system allows controlled flexion and extension of the chick embryonic knee with a range of motion of ...

متن کامل

Mechanosensitive control of plant growth: bearing the load, sensing, transducing, and responding

As land plants grow and develop, they encounter complex mechanical challenges, especially from winds and turgor pressure. Mechanosensitive control over growth and morphogenesis is an adaptive trait, reducing the risks of breakage or explosion. This control has been mostly studied through experiments with artificial mechanical loads, often focusing on cellular or molecular mechanotransduction pa...

متن کامل

Immobilized chicks as a model system for early-onset developmental dysplasia of the hip.

We have almost no understanding of how our joints take on their range of distinctive shapes, despite the clinical relevance of joint morphogenesis to postnatal skeletal malformations such as developmental dysplasia of the hip (DDH). In this study, we investigate the role of spontaneous prenatal movements in joint morphogenesis using pharmacological immobilization of developing chicks, and asses...

متن کامل

A Poroelastic Mixture Model of Mechanobiological Processes in Tissue Engineering. Part II: Numerical Simulations

In Part I of this article we have developed a novel mechanobiological model of a Tissue Engineering process hat accounts for the mechanisms through which an isotropic or anisotropic adherence condition regulates the active functions of the cells in the construct. The model expresses mass balance and force equilibrium balance for a multi-phase mixture in a 3D computational domain and in time dep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 47 5  شماره 

صفحات  -

تاریخ انتشار 2014